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Abstract 
 

In 2004, the President announced a “Vision for Space Exploration” that is bold and forward-thinking, 
yet practical and responsible. The vision explored answers to longstanding question of importance to 
science and society and will develop revolutionary technologies and capabilities for the future, while 
maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space 
exploration is electric power systems. In this paper, the author evaluates surface power technology 
options in order to identify leading candidate technologies that will accomplish lunar design reference 
mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole 
with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW 
continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions 
and a nominal 2-kW, 2-person unpressurized rover. 

To help direct NASA’s technology investment strategy, this lunar surface power technology 
evaluation assessed many figures of merit including: current technology readiness levels (TRLs), 
potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements 
in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, 
safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, 
extensibility to Mars missions, costs, and risks. 

For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were 
down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion 
options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange 
Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and 
distribution architectures and component technologies were defined consistent with the preferred habitat 
power generation technology option and the overall lunar surface mission. For rover power, more than 
20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM, RFC, 
or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings 
of this surface power technologies evaluation. 
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Presentation Outline

• Introduction

• Study Approach, Guidelines & Assumptions

• Candidate Power Technologies

Habitat/ISRU

Human Unpressurized Rover

• Technology Assessment Results

• Recommendations & Findings
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• 6-week, Internal NASA study (Spring 2004)

• Study power team members
JSC/Tim Lawrence, GRC/Ray Beach

• Purpose
Derive complete set of lunar surface system technology options 

Enable DRM-3 mission scenario

30-90 day stay at lunar polar site

Identify potential to advance to TRL 6 by 2014

Identify programmatic cost and risk metrics 

Introduction
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• Fill-in needed requirements/assumptions
• Create figures of merit (FOMs)

• Identify broad range of candidate power technologies
Data from literature review & subject matter experts
Calculations & scaling
SOA & Advanced

• Prescreen candidate technologies
Eliminate poor performers & immature technologies

• Compare remaining technologies using FOMs
Capture data & references in Excel spreadsheet

• Recommend leading technologies

Approach

NASA/TM—2005-213629 3
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• 30-90 day (90 day) mission to lunar south pole in 2020
Exact landing site unspecified

• 3-10 year operating life (nominal 5-year)

5 missions to same site, once per year

• 20-100 kW (nominal 50 kW) habitat power system
Shared nuclear heat source, 3/2 redundant dynamic converters & 
radiators

240 kW-hrs energy storage

• 1-3 kW (nominal 2 kW) rover power system
Shared isotope heat source & radiator, dual redundant dynamic 
converters

8-hr sortie/8-hr recharge periods

• Subsystem TRL 6 by  ~2014

Key Guidelines/Assumptions

Assumptions in italics
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NASA Technology Readiness 
Levels (TRLs) [Mankins 2001]

TRL 9 Actual system flight proven through successful mission operations.

TRL 8 Flight System completed and qualified through test and demonstration.

TRL 7  System prototype demonstrated in a space environment.

TRL 6  System Prototype Demo in Relevant Environment

TRL 5  Component and/or breadboard validated in relevant environment.

TRL 4  Component and/or breadboard validated in laboratory environment.

TRL 3  Critical function or characteristic demonstrated (proof-of-concept).

TRL 2  Technology concept and/or application formulated.

TRL 1  Basic principles observed and reported.

NASA/TM—2005-213629 4
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Power Technology Quantitative 
Figures of Merit (FOMs)

• Mass, kg/kW

Includes heat source, conversion, heat rejection & PMAD 
hardware

• Deployed Area, m2/kW

• Volume, m3/kW

• Energy Storage Specific Energy, W-hr/kg

Includes mass of integration elements

April 21, 2005 2005 Space Power Workshop Chart 7

Qualitative Power
Technology FOMs (3 of 16)

3 or less45 or moreDeployment Complexity

(# major deployment steps)

Meets 1 
or less 

elements

Meets 2 
elements

Meets 3 or 
more 

elements

Extensibility to Future Human 
Mars Mission Power

(Surface, In-Space, NEP, NTR)

< $10 M$10's M> $100's MFunding to Achieve TRL 6

LowMediumHighFOM
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Power Technology Assessment

50 kW Habitat Power
Technology Results
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• Identified space power reactor options:

Liquid metal cooled (SP-100)

Gas cooled (Escort)

Heat pipe cooled (SAFE)

• All options are leading technology candidates:

Acceptable mass, volume; technology heritage

• Liquid metal cooled technology:

Best reactor/shield compactness

Lowest mass

• To avoid multiple shield penetrations in heat pipe cooled

Engine fluid loop and/or heat exchanger on reactor side of shield 

Nuclear Fission Reactor

NASA/TM—2005-213629 6
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• Technology Options:
Layered LiH/W or Be/DU  (thermal control needed)

4π shielding collocated with habitat

Human-rated

Instrument-rated plus regolith shielding

Remote, “instrument-rated + π/2 human-rated sector”

• Collocated reactor shielding options eliminated:
high mass

insufficient TRL for regolith handling equipment

• Leading technology candidate:
Remote, LiH/W, instrument rated + π/2 human-rated sector shield

~3000 kg shield mass (100 kW system 2.5-km from habitat)

Nuclear Reactor Shielding

April 21, 2005 2005 Space Power Workshop Chart 11

Nuclear Power Cart Concept

Power Technology Assessment

[Cataldo, 1997]
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• Technologies Eliminated
Direct Potassium Rankine (working fluid activation)
In-direct Potassium Rankine (insufficient TRL)
Organic Rankine Cycle (ORC) (high mass)
Combo Thermoelectric (TE)/ORC (high mass, large radiator)
AMTEC, MLQW TE (insufficient TRL)
In-core Thermionic [TFE-CsO] (insufficient TRL)
Themophotovoltaic (TPV) (high mass, large radiator)
Combo Brayton/ORC (no mass benefit, large radiator, greater 
complexity)

Surface Reactor Power Conversion

April 21, 2005 2005 Space Power Workshop Chart 13

• Competing technologies key FOMs (SOA technology, 50 kW)

1.4

1.6

2.7

Rad. 
Area,

m2/kW

5

4

4

TRL

mediumhigh136TE

mediumhigh120Stirling

highhigh125Brayton

Extensibility To 
Human Mars 

Mission

Funding To
Achieve TRL

Mass, 
kg/kW

Technology

Surface Reactor Power Conversion
(Continued)
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• All Habitat radioisotope power technologies eliminated

All GPHS-based technologies (238PuO2 availability)

Half US civilian production, stockpile 10 years = > ~2 kW 
converter

241Am Alphavoltaic, boron-nitride converter (insufficient isotope 
availability, poor mass scaling above mW level, launch safety)
3H-amorphous silicon (a-Si) Betavoltaic converter (poor mass scaling 
above mW level)
3H-phosphor, Si or a-Si photovoltaic converter (poor mass scaling 
above mW level)

Radioisotope Power Conversion
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• If collocated with habitat in permanently shadowed basin

• All solar photovoltaic & solar dynamic technologies 
eliminated

Lack of sunlight

Collocated Solar Photovoltaic &
Dynamic Power Conversion

NASA/TM—2005-213629 9
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• All technology options eliminated

All impose mission launch window restrictions

700-m tower deployed from habitat

High mass (2X reactor options), Insufficient tower TRL

Requires precision landing in known terrain region 

Power cart deployment to:

Shackleton Crater North Rim Massif (35°-40° incline)

Incline exceeds rover locomotion limit (30°-35°) on friable slopes

Excessive regolith depth near craters 

Malapert Mountain

Low rover TRL

Excessive operational risk (60-100 Km deployment)

Solar Photovoltaic
Power-Tower Systems

Mt. Malapert is shown in the yellow box to the right

The South Pole (center) is located on the rim of the 
Shackelton Crater.

Notice the irregular terrain between Mt. Malapert 
and the South Pole

Notice the deep depressions between Mt. Malapert 
and the South Pole

Mt. Malapert is located 122 Km from the South Pole 
at 84.9S, 12.9E: It is a 5-Km high, 69-Km wide.

Yearly insolation:  89% full, 4% partial, 7% none.  
Shaded periods last 5+ days, 5 times per year.

Mt. Malapert is 60-Km to 100-Km away from areas 
that may contain water ice (shown in blue on left).

The top is a plateau approximately 10 Km2 in area.

Shackleton

Lunar South Pole

NASA/TM—2005-213629 10
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• All power beaming technologies eliminated

High mass-10X, Insufficient TRL

• RF transmitter/receiver

3 satellites

357-m diameter transmit antenna (50-100 MT antenna mass)

8 MWe power ( > 40 MT system mass)

134 m x 134 m auto-deployed, surface rectenna

• Laser diode transmitter/PV receiver

3 satellites

~34-m transmit dish

0.025-µrad pointing system

200 kW transmit satellite (90 MT)

Beamed Power Conversion Systems
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• Technologies eliminated:

Polymer Li Ion battery (insufficient TRL)

Solid oxide fuel cell (noncompetitive stack power density, insufficient 
TRL)

Flywheel system (high mass)

Thermal phase change material (eliminated w/Solar Dynamic option)

• Competing technology key FOMs (SOA)

Habitat Energy Storage

1.0

n/a

Rad. 
Area,

m2/kW

4

5

TRL

highmedium412PEM-RFC

highmedium90Liquid Li Ion 
Battery

Extensibility To 
Human Mars 

Mission

Funding To
Achieve TRL

Sp. 
Energy, 
W-hr/kg

Technology
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• Eliminated Technologies:

Low Frequency AC Distribution (high mass)

• Candidate Technologies

3Φ AC (~ 1000-Hz), High Voltage (~ 1000-V) [Alternator]

High Voltage DC [Stirling, TE]

Low Mass, High Frequency DC-to-DC Converters

Ring & Star Distribution Architectures

Ring may have better efficiency, load management capability

Electronics Reliability Improved Through Use Of SiC

SOA Silicon Capable With Box Level Redundancy 

Power Management and
Distribution System (PMAD)

April 21, 2005 2005 Space Power Workshop Chart 21

• Insufficient time to complete evaluation of identified 
technology options

• Heat rejection technology important for all high-power 
conversion options

• Recommend further study

Heat Rejection

NASA/TM—2005-213629 12
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Power Technology Assessment

2 kW Human Rover
Power Technology Results
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• Technologies eliminated
All nuclear reactor power conversion options (high mass)
All solar PV & dynamic conversion options (lack of sunlight)
O2/CH4 internal combustion engine; Flywheel system (high mass)
Solid oxide fuel cell (noncompetitive stack power density, insufficient 
TRL)
Polymer Li Ion battery (insufficient TRL)
Radioisotope power conversion technologies

All power technologies eliminated for >2 kWe (238PuO2 availability)
Direct Potassium Rankine (insufficient TRL)
AMTEC, MLQW TE (insufficient TRL); SiGe TE (high mass)
Combo TE/ORC, ORC (large radiator area)
Brayton, TPV (high mass & large radiator area)
Out-of-core CsO-triode thermionic (high mass, insufficient TRL)
Combined cycle - Brayton/ORC (high mass)

Human Rover Power Technologies

NASA/TM—2005-213629 13
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• Competing technology key FOMs (SOA)

0.14

0.22

0.04

***

Vol., 
m3/kW

highmedium5n/a118Liquid Li Ion 
Battery

mediummedium41.0822nd PEM RFC

mediummedium41.040Primary PEM FC

2.2

Rad. Area,
m2/kW

4

TRL

lowmedium100Radioisotope/ 
Stirling

Extensibility 
To Human 

Mars Mission

Funding To
Achieve 

TRL

Mass, 
kg/kW

Technology

Human Rover Power Technologies
(Continued)
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Power Technology
Recommendations

Power Technology Assessment
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• On the basis of FOMs:

Nuclear fission reactor
LiH/W layer, π/2 sector shield

Deployed via power cart 2.5 Km from habitat

Brayton, Stirling or Thermoelectric Power converter
NaK pumped loop coupled to deployable heat pipe radiator

• Technology Findings:

50 kW System - ~6 MT Mass, ~100-m2 Radiator

Favorable Brayton scaling at higher power

Favorable Stirling & TE scaling at rover power levels

Dynamic & Static Converters rely on “dynamic” liquid metal loops

Heat source & heat rejection

50 kW Habitat Power
Leading Technologies & Findings

April 21, 2005 2005 Space Power Workshop Chart 27

• On the basis of FOMs:
Independent (contingency), Radioisotope/Stirling Converter

~180-kg mass & ~3-m2 radiator (battery peaking power)
Rechargeable (dependent)

Liquid Li-ion Battery
~200-kg mass, 0.1-m3 volume & no radiator

PEM RFC System
160-kg mass, 0.5-m3 volume and 2-m2 radiator

• Findings:
Primary PEM fuel cell has ½ mass (fluid interface complexity)
Radiator configurations:

Deployed, vertical, top-mounted = minimal dust collection
Fixed, horizontal, roof mounted 

Will tend to collect dust
Aids rover equipment & crew thermal control

2 kW Rover Power
Leading Technologies & Findings

NASA/TM—2005-213629 15
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In 2004, the President announced a “Vision for Space Exploration” that is bold and forward-thinking, yet practical and responsible. The vision explores

answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future,

while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this

paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design

reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the

year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant

emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA’s technology investment strategy, this lunar

surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL

6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity,

required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to

Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a

nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-

ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution

architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar

surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM RFC,

or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies

evaluation.








